A new automated method for the segmentation and characterization of breast masses on ultrasound images.

نویسندگان

  • Jing Cui
  • Berkman Sahiner
  • Heang-Ping Chan
  • Alexis Nees
  • Chintana Paramagul
  • Lubomir M Hadjiiski
  • Chuan Zhou
  • Jiazheng Shi
چکیده

Segmentation is one of the first steps in most computer-aided diagnosis systems for characterization of masses as malignant or benign. In this study, the authors designed an automated method for segmentation of breast masses on ultrasound (US) images. The method automatically estimated an initial contour based on a manually identified point approximately at the mass center. A two-stage active contour method iteratively refined the initial contour and performed self-examination and correction on the segmentation result. To evaluate the method, the authors compared it with manual segmentation by two experienced radiologists (R1 and R2) on a data set of 488 US images from 250 biopsy-proven masses (100 malignant and 150 benign). Two area overlap ratios (AOR1 and AOR2) and an area error measure were used as performance measures to evaluate the segmentation accuracy. Values for AOR1, defined as the ratio of the intersection of the computer and the reference segmented areas to the reference segmented area, were 0.82 +/- 0.16 and 0.84 +/- 0.18, respectively, when manually segmented mass regions by R1 and R2 were used as the reference. Although this indicated a high agreement between the computer and manual segmentations, the two radiologists' manual segmentation results were significantly (p < 0.03) more consistent, with AOR1 = 0.84 +/- 0.16 and 0.91 +/- 0.12, respectively, when the segmented regions by R1 and R2 were used as the reference. To evaluate the segmentation method in terms of lesion classification accuracy, feature spaces were formed by extracting texture, width-to-height, and posterior shadowing features based on either automated computer segmentation or the radiologists' manual segmentation. A linear discriminant analysis classifier was designed using stepwise feature selection and two-fold cross validation to characterize the mass as malignant or benign. For features extracted from computer segmentation, the case-based test A(z) values ranged from 0.88 +/- 0.03 to 0.92 +/- 0.02, indicating a comparable performance to those extracted from manual segmentation by radiologists (A(z) value range: 0.87 +/- 0.03 to 0.90 +/- 0.03).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

روشی جدید به منظور تعیین مرز ضایعات در تصاویر فراصوت از بافت پستان: اصلاح وفقی ضریب انتشار ناهمسانگرد

Accurate segmentation plays a vital role in automated analysis of ultrasonic images. A new method based on adaptive anisotropic diffusion is introduced here for lesion detection in ultrasonic images of the breast. In this method, a hypothesis testing framework is defined first to separate lesions from healthy breast tissue. Then the boundary of lesion is estimated by adaptive anisotropic diffus...

متن کامل

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

Design and evaluation of a new automated method for the segmentation and characterization of masses on ultrasound images

Segmentation of masses is the first step in most computer-aided diagnosis (CAD) systems for characterization of breast masses as malignant or benign. In this study, we designed an automated method for segmentation of masses on ultrasound (US) images. The method automatically estimated an initial contour based on a manually-identified point approximately at the mass center. A two-stage active co...

متن کامل

A Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures

Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 36 5  شماره 

صفحات  -

تاریخ انتشار 2009